A posteriori error estimate for the mixed finite element method
نویسندگان
چکیده
منابع مشابه
A posteriori error estimate for the mixed finite element method
A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...
متن کاملResidual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method
Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate’s thickness and are uniform for a wide range of stabilisa...
متن کاملA posteriori error estimate in quantities of interest for the finite element heterogeneous multiscale method
We present an a posteriori error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space and the missing macroscopic data is recovered on-the-fly using the so...
متن کاملA posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate
We present an a posteriori error estimator for a mixed finite element method for the Reissner-Mindlin plate model. The finite element method we deal with, was analyzed by Durán and Liberman in 1992 and can also be seen as a particular example of the general family analyzed by Brezzi, Fortin, and Stenberg in 1991. The estimator is based on the evaluation of the residual of the finite element sol...
متن کاملA Posteriori Error Estimates for the Mortar Mixed Finite Element Method
Several a posteriori error estimators for mortar mixed finite element discretizations of elliptic equations are derived. A residual-based estimator provides optimal upper and lower bounds for the pressure error. An efficient and reliable estimator for the velocity and mortar pressure error is also derived, which is based on solving local (element) problems in a higher-order space. The interface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1997
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-97-00837-5